Partial Differential equation of High order CH2

Second and Higher Order Linear
Differential Equations and Systems

Introduction

Linear second order differential equations with constant coefficients are the simplest
of the higher order differential equations, and they have many applications. They are
of the general form y” + Ay’ + By = F(x) with A and B constants and F (x), called the
nonhomogeneous term, a known function of x. The equation is called nonhomogeneous
when F(x) is not identically zero; otherwise, it is called homogeneous. All general solu-
tions are shown to be the sum of two quite different parts, one being a solution of the
homogeneous equation called the complementary function that contains the expected
two arbitrary constants of integration, and the other a special solution called a particular
integral that depends only on F(x) and contains no arbitrary constants.

& Homogeneous Linear Constant Coefficient
Second Order Equations

he simplest general higher order homogeneous differential equation that occurs

linear constant in applications is the linear constant coefficient second order equation
coefficient second
order equation
d’y  dy
— +A—4+ By=0. 1
dx? ax O

arbitrary constants, the general solution of (1) from which all particular solutions

general solution
can be obtained can be written

y(x) = cyi(x) + e2y2(x). ®)

PETTIITEI Dircct substitution of the functions yi(x) = sin 2x and y,(x) = cos2x into the sec-
ond order differential equation

V'i+4y=0
confirms that they are solutions. The functions are linearly independent for all x
because they are not proportional, so

y(x) = c¢1c08 2x + ¢;8in 2x

is the general solution of the differential equation. [ |

We will now find the general solution of (1), and when doing so use will be
made of the fact that if y(x) = ce™*, with ¢ and A constants, then

d dlce** a2 42 Ax

dy _dlee] .o &y e

= — = cA’e.
dx dx dx? dx?

Substituting these results into (1) leads to the equation

(A* + Ax+ B)e™ = 0.
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Partial Differential equation of High order CH2

However, the factor e** is nonvanishing for all x, so after its cancellation this equa-
tion is seen to be equivalent to the quadratic equation for A

A+ Ar+ B=0. (6)

When the quadratic equation (6) has two distinct (different) roots A; and A,
the functions y;(x) = exp(x1x) and y»(x) = exp(i,x) will be linearly independent
for all x, because y;(x)/y>(x) = exp[(x; — A2)x]is not constant. Thus, then exp(i;x)
and exp(x,x) are linearly independent solutions of (1), so the general solution is

y(x) = ¢j exp(r1x) + ¢z exp(rax), (7)

where ¢; and ¢; are arbitrary constants.

It is now necessary to introduce the type of initial conditions that are appro-
priate for (1). As (1) is a second order differential equation, it relates y(x), y'(x),
and y”(x), so it follows that suitable initial conditions will be the specification of
y(x) and y’(x) at some point x = a. Then the value of y”(a) cannot be assigned
arbitrarily, because the differential equation itself will determine its value in terms
of y(a) and y'(a). The solution of (1) satisfying these initial conditions can be found
from the general solution (7) by determining ¢; and ¢; from the two equations:

Initial condition on y(x)
initial conditions

y(a) = crexp(ra) + ¢y exp(iaa),

Initial condition on y'(x)

- (®)

y’(a) — A1G1 exp(lla) + A2 exp(kga).

When we considered systems of linear algebraic equations in Chapter 3, it was
shown that equations (8) will determine ¢; and ¢, uniquely if the determinant of

the coefficients of ¢; and ¢, is nonvanishing. Thus, the specification of y(a) and y'(a)
will be appropriate as initial conditions if

_ | exp(ra) exp(raa)
IR exp(ila) lgexp(iga) 7 0. 9)

Expanding the determinant gives A = (A, — A1) exp[(A; + A»)a]. However, by
hypothesis A1 # 12, while exp[(11 + A2)a] never vanishes, so A # 0. The particular
solution satisfying the initial conditions follows by using the values of ¢; and ¢;
found from (8) in the general solution (7).

Lecturer Prof. Dr. Ahmed H. Flayyih/ Science college / The University of Thi-Qar 23



Partial Differential equation of High order CH2

PETTEN Find the solution of the initial value problem

y'+4y=0, if y(z/4)=1 and y(m/4)=1.

Seolution In Example 6.2 direct substitution has already been used to show that
cos 2x and sin 2x are linearly independent solutions of the differential equation, so
its general solution is

y(x) = c1cos 2x + ¢;sin 2x,
from which it follows by differentiation that
y'(x) = —2¢15in 2x + 2¢;c08 2x.

Imposing the initial condition on y(x) at x = 7 /4 leads to the following equation
that must be satisfied by ¢; and ¢;:

1 =cicosm/2 + cpsinm /2.

Similarly, imposing the initial condition on y'(x) at x = 7 /4 leads to the second
condition that must be satisfied by ¢; and ¢;:

1 = —2¢isinm/2 + 2ccos /2.

1 = —2c¢ysinm /2 4+ 2¢c;cos /2.

These equations have the solution ¢; = —1/2 and ¢; = 1, so the particular solution
satisfying the initial conditions y(7/4) = 1 and y'(7/4) =1 is

1
y(x) = sin2x — 5 €08 2x. El

The quadratic equation determining the permissible values of A in the expo-
nential solutions y;(x) = exp(i1x) and y,(x) = exp(r,x) of differential equation

(1), namely,
A2+ AL+ B=0, (10)
e e T is called the characteristic equation of the differential equation. Its two roots,
equation
E —A+ A 4B —A— VA —4B
A= 3 and Ay = 3 s (11)

are the values of A to be used in the general solution (7). When the roots 1, and 4,
are real and distinct, the functions

yi(x) = exp(hix) and  ya(x) = exp(rox) (12)

are said to form a basis for the solution space of (1). This means that the solution
of every initial value problem for (1) can be obtained from the linear combination
y(x) = c1 exp(rix) + ¢z exp(A2x) by assigning suitable values to ¢; and c;.

A comparison of differential equation (1) and its characteristic equation (10)
shows the characteristic equation can be written down immediately from the dif-
ferential equation by simply replacing y by 1, dy/dx by A and d*y/dx” by A%. It is
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Case (1) (Real and Distinct Roots)

e o e T This case corresponds to the condition A — 4B > 0, with
depends on the roots

—A+AZ—4B —A- VX _4B
=TT " and = —— Y (13)

A
! 2 2

No more need be said about this case because it has already been established that
the functions exp(4,x) and exp(A»x) form a basis for the solution space of (1), which
thus has the general solution

y(x) = ci exp(r1x) + ¢ exp(iax).

Case (IlI) (Complex Conjugate Roots)

This case corresponds to the condition A — 48 < 0. A real solution y(x) corre-
sponding to complex conjugate roots %, and X, is only possible if the arbitrary con-
stants ¢; and ¢, are themselves complex conjugates. A routine calculation shows
thatif Ay = o + 16 and A; = o — 18, with

a=—(1/2)A, B =(1/2)4B - A7, (14)

Case (II) (Complex Conjugate Roots)

This case corresponds to the condition A —4B < (. A real solution y(x) corre-
sponding to complex conjugate roots 4, and 4, is only possible if the arbitrary con-
stants ¢; and ¢, are themselves complex conjugates. A routine calculation shows
thatif ,; = o +ip and A, = @ — 18, with

a=—(1/2)A B =(1/2)(4B— A", (14)
the two corresponding linearly independent solutions are
yi(x) = " cos Bx and y2(x) = e sin Bx. (15)

A basis for the solution space of (1) is formed by the functions ¢** cos Sx and
€“*sin Bx, corresponding to a general solution of the form

ni(x) = e**[cicos Bx + csin fx]. (16)

The calculation required to establish the form of this result is left as an exercise.

Case (IlIl) (Equal Real Roots)

This case corresponds to the condition A’ — 4B = 0, with

p=2i =x=—(1/2)A (17)
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In this case only the one exponential solution
y(x) =e™ (18)

can be found.
However, substitution of the function

¥ (x) = xet* (19)

into the differential equation shows that it is also a solution. The functions y;(x)
and y,(x) are linearly independent because y,(x)/y;(x) = x is not a constant, so
in this case a basis for the solution space of (1) is formed by the functions ¢/* and
xe!*, with the corresponding general solution

y(x) = (c1 + cax)e™”. (20)

Summary of the forms of solution of y” + Ay’ + By =0
summary of Characteristic equation: A> + AL + B =0

t f soluti . .
ypes of solron Case (I) A’ — 4B > 0. The general solution is

v(x) = ¢y exp(r,x) + c; exp(ipx), with
—A+ A -4B —-A—- VA —-4B
A= e and A = —

Case (II) A* — 4B < 0. The general solution is

yi(x) = e**[cicos Bx + cpsin Bx].  with
@=—(1/2)A and B =(1/2)(4B— A)".

Case (IIT) A* = 4B. The general solution is

y(x) = (c1 + cax)er”, with  u=—(1/2)A

Find the general solution and hence solve the stated initial value problem for
(i) V' +y —2y =0, with y(0) = 1 and y'(0) = 2;
(i) y"+2y 44y =0. with y(0) =2 and y'(0) = 1;
(iii) y" +4y +4y =0, with y(0) = 3 and y'(0) = 1.

Solution

(i) The characteristic equation is
M Ha—-2=0,
with the roots 1; = 1. 2, = —2, so this is Case (I). The general solution is

y(x) = cre* + e,

[ AMB’=1-4(-2=9>0 L) Casel
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The initial condition y(0) =1 is satisfied if
l=c+c2,

while the initial condition y'(0) = 2 is satisfied if
2=rc —20.

These equations have the solution ¢; = 4/3 and ¢, = —1/3, so the solution of the
initial value problem is

y(x) = (4/3)e* = (1/3)e .
(ii) The characteristic equation is
2P+20+4=0,
":> with A — 4B = —12, so this 1s Case (II) with @ = —1 and § = +/3. The general

solution is
y(x) = e *[c;cos(x+/3) + crsin(xv/3)].

The initial condition y(0) =2 is satisfied if 2 = ¢;, while the initial condition
y'(0) = 1 is satisfied if

1= -2+ V3.

Solving these equations gives ¢; = 2 and ¢, = /3, so the solution of the initial value
problem is

y(x) = e *[v3sin(xv3) 4 2 cos(xV/3)].
(iii) The characteristic equation is
A 4+dr+4=0,
I]:> with A2 — 4B = 0, so this is Case (III) with i = —2. The general solution is
y(x) = (¢; + c2x)e .

Using the initial condition y(0) = 3 shows that 3 = ¢;, whereas the initial condition
y'(0) = 1 will be satisfied if

l:—f)-l-Cg.

Solving these equations gives ¢; = 3 and ¢; = 7, so the solution of the initial value
problem is

y(x) = (3 + Tx)e 2. [}
We now formulate the fundamental existence and uniqueness theorem for the

homogeneous linear second order constant coefficient differential equation (1).
This is a special case of a more general theorem that will be quoted later.

Existence and uniqueness of solutions of homogeneous second order constant

coefficient equations Let differential equation (1) have two linearly indepen-

3’:::;::;::5“0‘: dent solutions y;(x) and y,(x). Then, for any x = x, and numbers p; and p,, a
Solntions unique solution of (1) exists satisfying the initial conditions

y(x0) = no, YV (x0) = 1.
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Proof 'The existence of the solutions y;(x) and y,(x) was established when the
cases (I), (II), and (III) were examined. The nonvanishing of the determinant A
in (9) showed ¢; and c> to be uniquely determined by the given initial conditions
when the roots are real and distinct, so the solution of the initial value problem is
also unique. An examination of the form of the determinant A in cases (II) and
(TIT) establishes the uniqueness of the solution in the remaining two cases, though

the details are left as an exercise. [ ]
two-point boundary A different type of problem that can arise with second order equations occurs
conditions when the solution is required to satisfy a condition at two distinct points x = a and

x = b, instead of satisfying two initial conditions. Problems of this type are called
two-point boundary value problems, because the points @ and b can be regarded
as boundaries between which the solution is required, and at which it must satisfy
given boundary conditions. Problems of this type occur in the study of the bending
of beams that are supported in different ways at each end, and elsewhere (see
Section 8.10).

Typical two-point boundary value problems involve either the specification of
y(x) at x = a and at x = b, or the specification of y(x) at one boundary and y'(x) at
the other one. The most general two point boundary value problem involves finding
a solution in the interval @ < x < b such that

y'+ A+ By =0,
subject to the boundary condition at x = a

ay(a)+ By'(a) = p.,
and the boundary condition at x = b

yy(b) +38y'(b) = K,

where «, B. v, é, i, and K are known constants.

PETTEI Solve the two-point boundary value problem

y' 42y +17y =0, with y(0) =1 and y'(7/4) = 0.

Solution The characteristic equation is
W20 4+17=0
with the complex roots Ay = —1 +4i and A, = —1 — 44, so the general solution is

V(x) = e “[cicosdx + czsindx].
At the boundary x = 0 the general solution reduces to 1 = ¢;, whereas at the
boundary x = 7/4 it reduces to 0 = —e /% 4 4¢,e~"/*, showing that ¢; = 1/4. So

the solution of the two-point boundary value problem is

1
y(x) = e"‘[cos4x + 2 sin4x], for0 < x < /4. ]

Summ aly  This section introduced the homogeneous linear second order constant coefficient equa-
tion and explained the importance of the linear independence of solutions. It showed how
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for this second order equation the general solution can be expressed as a linear combi-
nation of the two linearly independent solutions that can always be found. The form of
the two linearly independent solutions was shown to depend on the relationship between
the roots of the characteristic equation. A fundamental existence and uniqueness theorem
was given and the nature of a simple two-point boundary value problem was explained.

EXERCISES 6.1

In Exercises 1 through 4 test the given pairs of functions for Solve the boundary value problems in Exercises 29 through
linear independence or dependence over the stated inter- 36 using the method of this section, and confirm the so-
vals. lutions for even-numbered problems by using computer
) 2 algebra.
1. (a) sinh” x, cosh” x, for all x.
(b) x +1n|x|. x +21In x|, for [x| > 0. 29. y"+4y +3y =0, with y(0) =1, y'(1) = 0.
(¢) 1+4x,x+x% forallx. 30. y" +4y' +4y = 0, with y(0) = 2, y'(1) = 0.
2. (a) sinx, cosx, forall x. 3Ly + 6y +9y =0,with y(-1) =1, y'(1) = 0.
(b) sin x cos x. sin 2x, for all x. 32 y"+ 4y + 5y =0, with y(=7/2) =1, y'(n/2) = 0.
(¢) e, xe*, for all x. 33, y" 42y +26y =0, with y(0) = 1, y'(/4) = 0.
3. (a) |x]x2 X%, for -1 < x < 1. 34, y" 42y + 26y = 0, with y(0) = 0, y'(/4) = 2.
(b) sinx, tanx, for —/4 < x < 7/4. 35, y" 45y + 6y =0, with y(0) =0, y'(1) = 1.
(¢) x|x|.x%, forx > 0. 36. y"+2y =3y =0,with y(0) =1, y'(1) = 1.
4. (a) sinx, [sinx|,form <=x <27. Theorem 6.1 ensures the existence and uniqueness of so-
(b) x* — 2x 44, —4x% + 8x — 16, for all x. lutions of initial value problems for the differential equa-
(€) x +2|x|. x — 2|x| for all x. tion in (1), but does not apply to two-point boundary value
problems that may have no solution, a unique solution or
Find the general solution of the differential equations in infinitely many solutions. In Exercises 37 and 38 use the
Exercises 5 through 20. general solution of

5.y 43y —4y=0. 6. V' +2yv +yv=0.

y'+y=0
T y' =2y +2y=0. 8. VI+2yv4+2y=0. ) ) ) ) ) ) )
9. V' 42y —3y=0 10. v/ +5v +4v=0 to find if a solution exists and is unique, exists but is
Py ey —oy =0 Yoy Ay =0 nonunique, or does not exist for each set of boundary con-
11. y"+ 6y +9y =0. 12, y" =2y +4y =0. ditions.
13. y" -4y 45y =0. 14. Y+ 3y +3y=0.
15. y/ + 6y 425y =0. 16, y’ — 4y 420y =0. 3. @ y0)=0.ym)=0. () y(©O)=1,y(x/4)=V2.

(b) y(0) =1, y(2m) =2.
38. (@) ¥(0)=1.y(x/2)=1. (¢) y(0)=0,y(7)=0.
(b) y(0)=0,y(x)=0.

17. y" + 5y +4y =0. 18. y"+4y' + 5y =0.
19. y" =3y +3y=0. 20. yV'+y +v=0.

Solve initial value problems in Exercises 21 through 28 us- 39. For what values of » will the following two-point bound-
ing the method of this section, and confirm the solutions for ary value problem have infinitely many solutions, and
even numbered problems by using computer algebra. what is the form of these solutions:

21 y' 45y + 6y = 0, with y(0) =1, y'(0) = 2. Y 4+ 2%y =0, with y(0) =0, y(7) = 0.

22. ¥ + 4y + 5y =0, with y(0) = 1, y/'(0) = 3.

B , . ) 40. A particle moves in a straight line in such a way that
23. y" +2y' +2y = 0, with y(0) = 3. y(0) = L. its distance x from the origin at time 7 obeys the dif-
24. y" 4 6y" + 8y = 0, with y(0) =1, y'(0) = 0. ferential equation x” + x’ + x = (. Assuming it starts
25. y" =5y + 6y =0, with y(0) =2, y'(0) = 1. from the origin with speed 30 ft/sec, what will be its
26. y" — 3y + 3y = 0, with y(0) =0, y'(0) = 2. distance from the origin, its speed, and its acceleration
27,y — 3y — 4y = 0, with y(0) = 1, y/(0) = 2. after r/+/3 seconds?
28. ' — 2y + 3y = 0, with y(0) = 1, y/(0) = 0. 41. The angular displacement 6 of a damped simple pen-

dulum obeys the equation 8" + 218’ + (u* + p?)d =0,
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" Example 3.1.1: General Solution

Salve
y' +3y —4dy=10
Solution
The strategy is to search for a solution of the form
y=e".
The reason for this is that long ago some geniuses figured this stuff out and it works.

Now calculate derivatives

Substituting into the differential equation gives
re 4 3(re) —4(e™) = (r* + 3r —4)e™ = 0.
Now divide by e™ to get
™ 4+3r—4=0
(r—1)(r+4)=0

The solutions (roots) to this polynomial are

r=1

and

r=—4
We can conclude that two solutions are

h= e
and

yo=e U

Now let

Liy)=y"+3y —4
It is easy to verify that if y; and y» are solutions to
L(y) =0
then
c1y + a2
is also a solution. More specifically we can conclude that
y=ciel et

Represents a two dimensional family (vector space) of solutions. Later we will prove that this is the most general description of
the solution space.
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P—————————————————————————
Solve
y' —y' —6y=0
with (0) = 1 and 3'(0) = 2.
Solution
As before we seek solutions of the form
y=e"
Now calculate derivatives
y' =rety"’ =rle™
Substituting into the differential equation gives
rie™ + (re™) — 6(e™)
(r*—r—86)e" =0
Now divide by e™ to get
rP—-r—-6=0
(r=3)r+2)=0
We can conclude that two solutions are
y = e
and
gpo=e 2
We can conclude that
Y= cw‘“ + Cse e
Represents a two dimensional family (vector space) of solutions. Now use the initial conditions to find that
l=¢) +ea
We have that
y' =3Ce¥ —2Ce7
Plugging in the initial condition with y’, gives
2=23¢; —2¢
This is a system of two equations and two unknowns. We can use a matrix to arrive at ¢; = % and C = l
The final solution is
y= %esz i %e—zr
In general for
ay" +by' +ecy =0 (3.1.5)
we call
ar’ +br+c=0 (3.1.6)
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EXAMPLE 1 Solve the equation y” + y" — 6y = 0.

SOLUTION The auxiliary equation is
P+ r—6=0—-2)(r+3)=0

whose roots are r = 2, —3. Therefore, by (8) the general solution of the given differen-
tial equation is
y=cie” + e ™

We could verify that this is indeed a solution by differentiating and substituting into the
differential equation. (N

dy d
i +—y—y:0.

EXAMPLE 2 Solve 3 T dx

SOLUTION To solve the auxiliary equation 3r* + r — 1 = 0 we use the quadratic
formula:

-1 =13

6

r:

Since the roots are real and distinct, the general solution is

y = Cle(fH\fﬁ],r/é + Cze(flf\m),\-/@ EE

ASENl © b% — 4ac = 0
In this case ry = ry; that is, the roots of the auxiliary equation are real and equal. Let’s
denote by r the common value of r; and r». Then, from Equations 7, we have

b
9 r=—-— so 2ar+b=20
2a

We know that y; = e’ is one solution of Equation 5. We now verify that y, = xe" is also
a solution:

ayy + by, + cy, = a(2re™ + r*xe™) + b(e™ + rxe™) + cxe™
= (2ar + b)e™ + (ar* + br + c)xe’™
= 0(e™) + 0(xe™) =0
The first term is O by Equations 9; the second term is 0 because r is a root of the auxiliary

equation. Since y; = e and y, = xe" are linearly independent solutions, Theorem 4 pro-
vides us with the general solution.
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If the auxiliary equation ar® + br + ¢ = 0 has only one real root r, then the
general solution of ay” + by’ + cy = 0 s

y=cie" + crxe™

EXAMPLE 3 Solve the equation 4y” + 12y" + 9y = 0.
SOLUTION The auxiliary equation 4r* + 12r + 9 = 0 can be factored as

2r+3)=0
so the only root is » = —3. By (10) the general solution is
y=cie*? + cyxe ¥ L}

CASENl = b* — 4ac < 0
In this case the roots r; and r; of the auxiliary equation are complex numbers. (See Appen-
dix I for information about complex numbers.) We can write

r|=o:+iﬁ r2=a—i[3

where « and B are real numbers. [In fact, « = —b/(2a), B = v/4ac — b*/(2a).] Then,
using Euler’s equation

e = cos @ + isin 6
from Appendix I, we write the solution of the differential equation as

y — Clerﬂ + Czergr — CletaHB),\' + Cze(uﬂ'ﬁ)x

y — Cler].\' + Czerg.\' — Cle(a+iﬁ].\' + Cze(ur—iﬁ).\'
= C1e**(cos Bx + isin Bx) + Cre**(cos Bx — isin Bx)
= e¢**[(C) + C3)cos Bx + i(C, — C3) sin Bx]
= e**(c; cos Bx + ¢»sin Bx)
where ¢; = Ci + C», ¢2 = i(Ciy — (). This gives all solutions (real or complex) of the dif-

ferential equation. The solutions are real when the constants ¢; and ¢, are real. We sum-
marize the discussion as follows.
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[11] If the roots of the auxiliary equation ar®* + br + ¢ = 0 are the complex num-
bers r, = a + i3, r» = a — if3, then the general solution of ay” + by’ + ¢y =0
18

y = e**(c; cos Bx + ¢, sin Bx)

EXAMPLE 4 Solve the equation y” — 6y" + 13y = 0.
SOLUTION The auxiliary equation is > — 6r + 13 = 0. By the quadratic formula, the

roots are
6 *+36—-52 6=*,-16 3 + 9
r= = =3 =+
2 2
By (11) the general solution of the differential equation is
y = e*(ci cos 2x + ¢3sin 2x) mE
y'+y —6y=0 y(0) =1 y'(0) =0

SOLUTION From Example 1 we know that the general solution of the differential equa-
tion is

y(x) = c1e™ + c,e™

Differentiating this solution, we get
3x

y'(x) = 2c1e® — 3cre”

To satisfy the initial conditions we require that

[12] yO0)=c  + =1
[13] y'(0) =2¢; — 3¢;, =0
From (13) we have ¢; = %cl and so (12) gives
c,+§cl=1 c1=§ Cg=§

Thus, the required solution of the initial-value problem is
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EXAMPLE 6 Solve the initial-value problem
y'+y=20 y(0) =2 y'(0) = 3

SOLUTION The auxiliary equation is > + 1 = 0, or #* = — 1, whose roots are *i. Thus
a =0, 8= 1, and since ¢" = 1, the general solution is

y(x) = cicos x + cysin x
Since y'(x) = —c;sinx + ¢y cos x
the initial conditions become
y(0) =c1 =2 y'(0)=c,=3

Therefore, the solution of the initial-value problem is

y(x) = 2cos x + 3sin x (B

EXAMPLE 7 Solve the boundary-value problem
y'+2y +y=0 y(0) =1 y(1) =3
SOLUTION The auxiliary equation is
rP+2r+1=0 o (r+1)=0
whose only root is r = — 1. Theretfore, the general solution is
y(x) =cie " + crxe "
The boundary conditions are satisfied if
y0)=c =1
y(1) =cie! + ce' =3
The first condition gives ¢; = 1, so the second condition becomes
e+ cel=3
Solving this equation for ¢, by first multiplying through by e, we get

Il + ¢, = 3e SO c; = 3e — 1
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Thus, the solution of the boundary-value problem is

y=e*+ (3e — 1)xe ™" EE

Summary: Solutions of ay” + by’ + ¢ = 0

Roots of ar’* + br + ¢ =0 General solution
ry, 1> real and distinct y=ce" + ce”*
rn=rn=r y=rce" + crxe”
r, r» complex: « *+ i3 y = e“*(c; cos Bx + ¢, sin Bx)
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