Order of Partial Differential Equation (PDE)

A partial differential equation is an equation containing an unknown function of two or more variables and its partial derivatives with respect to these variables. The order of a partial differential equations is that of the highest-order derivatives. For example

 $y' = e^x \sec y$ has order 1, is non-linear, is separable $y' - e^x y + 3 = 0$ has order 1, is linear, is not separable $y' - e^x y = 0$ has order 1, is linear, is separable

$$egin{aligned} &rac{\partial u}{\partial t}-rac{\partial u}{\partial x}=0 & ext{is a first-order PDE.} \ &rac{\partial^2 u}{\partial x_1^2}+rac{\partial^2 u}{\partial x_2^2}+rac{\partial^2 u}{\partial x_3^2}=0 & ext{is a second-order PDE.} \ &rac{\partial^4 u}{\partial x_1^4}+rac{\partial^2 u}{\partial x_2^2}-u=0 & ext{is a fourth-order PDE.} \ &rac{\partial u}{\partial x_1} &rac{\partial^4 u}{\partial x_2}+u^4=0 & ext{is a first-order PDE.} \end{aligned}$$

First order with separated variable

To solve a differential equation is to find a way to eliminate the derivatives in the equation so that the relation between the dependent and the independent variables can be exhibited. For a first-order differential equation, this can be achieved by carrying out an integration. The simplest type of differential equations is

$$\frac{\mathrm{d}y}{\mathrm{d}x} = f(x),$$

where f(x) is a given function of x. We know from calculus that

$$y(x) = \int_a^x f(x') \mathrm{d}x'$$

If an equation can be written in the form

$$f(x)\mathrm{d}x + g(y)\mathrm{d}y = 0$$

the solution can be immediately obtained in the form of

$$\int f(x)dx + \int g(y)dy = C.$$
$$\frac{dy}{dx} = -\frac{x}{y}$$

can be solved by noting that the equation can be written as

$$y \, \mathrm{d}y + x \, \mathrm{d}x = 0.$$

Therefore the solution is given by

 $\int y \, \mathrm{d}y + \int x \, \mathrm{d}x = C$

$$\frac{1}{2}y^2 + \frac{1}{2}x^2 = C.$$

This general solution can be written as

$$y(x) = (C' - x^2)^{1/2}$$

or equivalently as

with

$$F(x,y) = C$$

 $F(x,y) = x^2 + y^2.$

Example5.17. Solving a Separable Differential Equation I.

Solve the differential equation y' = 2t(25 - y). Solution

This is almost identical to the previous example. As before, y(t) = 25 is a solution. If $y \neq 25$,

$$egin{aligned} &\int rac{1}{25-y}\,dy = \int 2t\,dt \ &(-1)\ln|25-y| = t^2 + C_0 \ &\ln|25-y| = -t^2 - C_0 = -t^2 + C \ &|25-y| = e^{-t^2 + C} = e^{-t^2}e^C \ &y-25 = \pm e^C e^{-t^2} \ &y=25 \pm e^C e^{-t^2} = 25 + A e^{-t^2}. \end{aligned}$$

As before, all solutions are represented by $y=25+Ae^{-t^2}$, allowing A to be zero.

Example 5.18. Solving a Seperable Differential Equation II.

Find the solutions to the differential equation

$$\sec(t)rac{dy}{dt}-e^{y+\sin(t)}=0$$

$$egin{aligned} & \sec(t)rac{dy}{dt}=e^{y+\sin(t)}\ & \sec(t)rac{dy}{dt}=e^ye^{\sin(t)}\ & e^{-y}\,dy=rac{e^{\sin(t)}}{\sec(t)}\,dt=\cos(t)e^{\sin(t)}\,dt \end{aligned}$$

Now integrate both sides to obtain

$$\int e^{-y}\,dy = \int \cos(t)e^{\sin(t)}\,dt
onumber \ -e^{-y} = e^{\sin(t)} + C
onumber \ y = -\ln\Bigl(D-e^{\sin(t)}\Bigr)$$

Example5.19. Rate of Change Proportional to Size.

Find the solutions to the differential equation y' = ky, which models a quantity y that grows or decays proportionally to its size depending on whether k is positive or negative. • Solution

The constant solution is y(t) = 0; of course this will not be the solution to any interesting initial value problem. For the non-constant solutions, we proceed much as before:

$$egin{aligned} &\int rac{1}{y}\,dy = \int k\,dt \ &\ln |y| = kt + C \ &|y| = e^{kt}e^C \ &y = \pm e^C e^{kt} \ &y = A e^{kt}. \end{aligned}$$

Again, if we allow A = 0 this includes the constant solution, and we can simply say that $y = Ae^{kt}$ is the general solution. With an initial value we can easily solve for A to get the solution of the initial value problem. In particular, if the initial value is given for time t = 0, $y(0) = y_0$, then $A = y_0$ and the solution is $y = y_0 e^{kt}$.

Given the logistic equation y' = ky(M - y),

a. Solve the differential equation for y in terms of t. Answer Solution

We separate variables (assuming
$$y \neq M$$
,):

$$\int \frac{dy}{y(M-y)} = \int k \, dt$$

$$\int \left(\frac{1}{y} + \frac{1}{M-y}\right) \, dy = \int kM \, dt$$

$$\ln |y| - \ln |M-y| = kMt + C$$

$$\ln \left|\frac{M-y}{y}\right| = -kMt - C$$

$$\left|\frac{M-y}{y}\right| = e^{-kMt-C}$$

$$\frac{M-y}{y} = Ae^{-kMt},$$
Therefore, we find that

$$y = \frac{M}{1 + Ae^{-kMt}} \quad \text{with} \quad A = \frac{M-y_0}{y_0}$$

Lecturer Prof. Dr. Ahmed H. Flayyih/ Science college / The University of Thi-Qar

Homogeneous Equations

```
homogeneous
equation of degree n
```

EXAMPLE 5.8

A function f(x, y) is said to be **algebraically homogeneous of degree** *n*, or simply **homogeneous of degree** *n*, if $f(tx, ty) = t^n f(x, y)$ for some real number *n* and all t > 0, for $(x, y) \neq (0, 0)$.

(a) If $f(x, y) = x^2 + 3xy + 4y^2$, then $f(tx, ty) = t^2(x^2 + 3xy + 4y^2) = t^2 f(x, y)$, so f(x, y) is homogeneous of degree 2.

(b) If $f(x, y) = \ln |y| - \ln |x|$ for $(x, y) \neq (0, 0)$, then $f(x, y) = \ln |y/x|$, so f(tx, ty) = f(x, y), showing that f(x, y) is homogeneous of degree 0. (c) If

$$f(x, y) = \frac{x^{3/2} + x^{1/2}y + 3y^{3/2}}{2x^{3/2} - xy^{1/2}}, \text{ then } f(tx, ty) = t^0 f(x, y),$$

showing that f(x, y) is homogeneous of degree 0.

(d) If

$$f(x, y) = x^2 + 4y^2 + \sin(x/y)$$
, then $f(tx, ty) = t^2(x^2 + 4y^2) + \sin(x/y)$,

so f(x, y) is *not* homogeneous, because although both the first group of terms and the last term are homogeneous functions of x and y, they are not both homogeneous of the same degree.

(e) If $f(x, y) = \tan(xy + 1)$, then $f(tx, ty) = \tan(t^2xy + 1)$, so f(x, y) is not homogeneous.

Homogeneous differential equations

The first order ODE in differential form

P(x, y)dx + Q(x, y)dy = 0

is called **homogeneous** if P and Q are homogeneous functions of the same degree or, equivalently, if when written in the form

$$\frac{dy}{dx} = f(x, y)$$
, the function $f(x, y)$ can be written as $f(x, y) = g(y/x)$.

The substitution y = ux will reduce either form of the homogeneous equation to an equation involving the independent variable x and the new dependent variable u in which the variables are separable. As with most separable equations the solution can be complicated, and it is often the case that y is determined implicitly in terms of x. Example: Solve the following Equation

$$(y^2 + 2xy)dx - x^2 \, dy = 0.$$

Solution Both terms in the differential equation are homogeneous of degree 2, so the equation itself is homogeneous. Differentiating the substitution y = ux gives

$$\frac{dy}{dx} = u + x \frac{du}{dx}$$
, or $dy = udx + xdu$.

After substituting for y and dy in the differential equation and cancelling x^2 , we obtain the variables separable equation

$$u(u+1)dx = xdu$$
, or $\frac{du}{u(u+1)} = \frac{dx}{x}$.

This has the general solution

$$u = \frac{Cx}{1 - Cx}$$
, but $y = ux$ and so $y = \frac{Cx^2}{1 - Cx}$,

where C is an arbitrary constant. In this case the general solution is simple and y is determined explicitly in terms of x.

$$\frac{dy}{dx} = \frac{y^2}{xy - x^2}.$$

Solution The equation is homogeneous because it can be written

$$\frac{dy}{dx} = \frac{(y/x)^2}{(y/x) - 1}.$$

Making the substitution y = ux, and again using the result dy/dx = u + xdu/dx, reduces this to the separable equation

$$u + x \frac{du}{dx} = \frac{u^2}{u-1}$$
, or $\left(1 - \frac{1}{u}\right) du = \frac{dx}{x}$.

Integration gives

$$u - \ln|u| = \ln|x| + \ln|C|,$$

where C is an arbitrary integration constant. Finally, substituting u = y/x and simplifying the result we arrive at the following implicit solution for y:

$$y = Ce^{y/x}$$
.

EXERCISES 5.5

In Exercises 1 through 14 find by hand calculation the general solution of the given homogeneous or near-homogeneous equations and confirm the result by using computer algebra.

1. y' = y/(2x + y). 2. $y' = (2xy + y^2)/(3x^2)$. 3. $y' = (2x^2 + y^2)/xy$. 4. $y' = (2xy + y^2)/x^2$. 5. y' = (x - y)/(x + 2y).

6. y' = (x + 4y)/x. 7. $y' = (2x + y \cos^2(y/x))/(x \cos^2(y/x))$. 8. $y' = 3y^2/(1 + x^2)$. 9. $y' = (x + y \sin^2(y/x))/(x \sin^2(y/x))$. 10. $y' = 3x \exp(x + 2y)/y$. 11. y' = (y + 2)/(x + y + 2). 12. y' = (y + 1)/(x + 2y + 2). 13. y' = (x + y + 1)/(x - y + 1). 14. y' = (x - y + 1)/(x + y).

The so-called *exact* equations have a simple structure, and they arise in many important applications as, for example, in the study of thermodynamics. After definition of an exact equation, a test for exactness will be derived and the general solution of such an equation will be found.

Exact equations

The first order ODE

definition of an exact equation

M(x, y)dx + N(x, y)dy = 0

is said to be **exact** if a function F(x, y) exists such that the total differential

d[F(x, y)] = M(x, y)dx + N(x, y)dy.

It follows directly that if

$$M(x, y)dx + N(x, y)dy = 0$$
 (22)

is exact, then the total differential

$$d[F(x, y)] = 0,$$

so the general solution of (22) must be

F(x, y) = constant.(23)

EXAMPLE 5.12

The total differential of
$$F(x, y) = 3x^3 + 2xy^2 + 4y^3 + 2x$$
 is

$$d[F(x, y)] = (\partial F/\partial x)dx + (\partial F/\partial y)dy = (9x^2 + 2y^2 + 2)dx + (4xy + 12y^2)dy,$$

so the exact differential equation

$$(9x^2 + 2y^2 + 2)dx + (4xy + 12y^2)dy = 0$$

has the general solution

$$3x^3 + 2xy^2 + 4y^3 + 2x =$$
constant.

Partial Differential equation of 1st order

CH1

Test for exactness The differential equation

$$M(x, y)dx + N(x, y)dy = 0$$

exactness

EXAMPLE 5.13

THEOREM 5.1

a simple test for

Test for exactness the differential equations

is exact if and only if $\partial M/\partial y = \partial N/\partial x$.

(a) $\{\sin(xy+1) + xy\cos(xy+1)\}dx + x^2\cos(xy+1)dy = 0.$

(b) $(2x + \sin y)dx + (2x \cos y + y)dy = 0.$

Solution In case (a) $M(x, y) = \sin(xy + 1) + xy\cos(xy + 1)$ and $N(x, y) = x^2\cos(xy + 1)$, and $\partial M/\partial y = \partial N/\partial x$, so the equation is exact.

In case (b) $M(x, y) = 2x + \sin y$ and $N(x, y) = 2x \cos y + y$ but $\partial M/\partial y \neq \partial N/\partial x$, so the equation is not exact.

Having established a test for exactness, it remains for us to determine how the general solution of an exact equation can be found. The starting point is the fact that if F(x, y) = constant is a solution of the exact equation

$$M(x, y)dx + N(x, y)dy = 0,$$

EXAMPLE 5.14

Show the following equation is exact and find its general solution:

 $\{3x^2 + 2y + 2\cosh(2x + 3y)\}dx + \{2x + 2y + 3\cosh(2x + 3y)\}dy = 0.$

Solution In this equation $M(x, y) = 3x^2 + 2y + 2\cosh(2x + 3y)$, and $N(x, y) = 2x + 2y + 3\cosh(2x + 3y)$, so as $M_y = N_x = 2 + 6\sinh(2x + 3y)$ the equation is exact:

$$F(x, y) = \int M(x, y)dx = \int \{3x^2 + 2y + 2\cosh(2x + 3y)\}dx$$
$$= x^3 + 2xy + \sinh(2x + 3y) + f(y) + C,$$

and

$$F(x, y) = \int N(x, y)dy = \int \{2x + 2y + 3\cosh(2x + 3y)\}dy$$
$$= 2xy + y^{2} + \sinh(2x + 3y) + g(x) + D.$$

For these two expressions to be identical, we must set $f(y) \equiv y^2$, $g(x) \equiv x^3$, and D = C, so F(x, y) is seen to be

$$F(x, y) = x^{3} + 2xy + y^{2} + \sinh(2x + 3y) + C,$$

and so the general solution is

$$x^{3} + 2xy + y^{2} + \sinh(2x + 3y) = C$$

where as *C* is an arbitrary constant we have chosen to write *C* rather than -C on the right of the solution.

The first equation yields

$$F(x,y) = 2y + \frac{1}{2}x^2y^2 + p(x).$$

The second equation requires

$$\frac{\partial F(x,y)}{\partial x} = xy^2 + \frac{\mathrm{d}}{\mathrm{d}x}p(x) = xy^2.$$

Therefore

$$\frac{\mathrm{d}}{\mathrm{d}x}p(x) = 0, \qquad p(x) = k.$$

Thus the solution is

$$F(x,y) = 2y + \frac{1}{2}x^2y^2 + k = C.$$

Combining the two constants, we can write the solution as

$$2y + \frac{1}{2}x^2y^2 = C'.$$

For example, the differential equation

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{xy^2}{2+x^2y} = 0$$

can be written in the form

$$(2+x^2y)\mathrm{d}y + xy^2\mathrm{d}x = 0.$$

Since

$$\frac{\partial}{\partial x}(2+x^2y) = 2xy, \qquad \frac{\partial}{\partial y}(xy^2) = 2xy$$

are equal, the differential equation is exact. Therefore, we can find the general solution in the form of

$$F(x,y) = C$$

with

$$\frac{\partial F(x,y)}{\partial y} = 2 + x^2 y, \qquad \frac{\partial F(x,y)}{\partial x} = xy^2.$$

Exercises

Show that the following differential equations are exact and find the general solutions:

c.

(a)
$$(2xy - \cos x)dx + (x^2 - 1)dy = 0$$
,
(b) $(2x + e^y)dx + xe^ydy = 0$.
Ans. (a) $x^2y - \sin x - y = c$, (b) $x^2 + xe^y = 0$

.7 Linear First Order Equations

The standard form of the linear first order differential equation is

$$\frac{dy}{dx} + P(x)y = Q(x),$$
(25)

steps used when solving a linear first order equation **Rule for solving linear first order equations**

STEP 1 If the equation is not in standard form and is written

$$a(x)\frac{dy}{dx} + b(x)y = c(x),$$

divide by a(x) to bring it to the standard form

$$\frac{dy}{dx} + P(x)y = Q(x),$$

with P(x) = b(x)/a(x) and Q(x) = c(x)/a(x)Find the integrating factor

STEP 2 Find the integrating factor

$$\mu(x) = \exp\left\{\int P(x)dx\right\}.$$

STEP 3 Rewrite the original differential equation in the form

$$\frac{d(\mu y)}{dx} = \mu Q(x).$$

STEP 4 Integrate the equation in Step 3 to obtain

$$\mu(x)y(x) = \int \mu(x)Q(x)dx + C.$$

- STEP 5 Divide the result of Step 4 by $\mu(x)$ to obtain the required general solution of the linear first order differential equation in Step 1.
- **STEP 6** If an initial condition $y(x_0) = y_0$ is given, the required solution of the i.v.p. is obtained by choosing the arbitrary constant *C* in the general solution found in Step 5 so that $y = y_0$ when $x = x_0$.

$$y(x) = \frac{1}{\mu(x)} \left[\int \mu(x) q(x) dx + C \right]$$

EXAMPLE 5.15

Solve the initial value problem

$$\cos x \frac{dy}{dx} + y = \sin x$$
, subject to the initial condition $y(0) = 2$.

Solution We follow the steps in the above rule.

STEP 1 When written in standard form the equation becomes

$$\frac{dy}{dx} + \frac{1}{\cos x}y = \tan x,$$

so $P(x) = 1/\cos x$ and $Q(x) = \tan x$.

STEP 2 The integrating factor

$$\mu(x) = \exp\left\{\int \frac{dx}{\cos x}\right\} = \exp\{\ln|\sec x + \tan x|\}$$
$$= \sec x + \tan x = \frac{1 + \sin x}{\cos x}.$$

STEP 3 The original differential equation can now be written

$$\frac{d}{dx}\left[\left(\frac{1+\sin x}{\cos x}\right)y(x)\right] = \left(\frac{1+\sin x}{\cos x}\right)\tan x$$

STEP 4 Integrating the result of Step 3 gives

$$\left(\frac{1+\sin x}{\cos x}\right)y(x) = \int \left(\frac{1+\sin x}{\cos x}\right)\tan x dx + C$$
$$= \int \sec x \, \tan x dx + \int \tan^2 x dx + C$$
$$= \sec x + \tan x - x + C = \frac{1+\sin x}{\cos x} - x + C.$$

STEP 5 Dividing the result of Step 4 by the integrating factor $\mu(x) = (1 + \sin x)/\cos x$ shows that the required general solution is

$$y(x) = \frac{C \cos x}{1 + \sin x} + 1 - \frac{x \cos x}{1 + \sin x}$$

Note:

$$\int \sec heta \, d heta = egin{cases} rac{1}{2} \ln rac{1+\sin heta}{1-\sin heta} + C \ \ln \left| \sec heta + an heta
ight| + C \ \ln \left| an \left(rac{ heta}{2} + rac{\pi}{4}
ight)
ight| + C \end{cases}$$

 $\frac{dy}{dx} + P(x)y = Q(x),$

Example 5.2.1. Find the general solution of the following differential equation:

$$x\frac{\mathrm{d}y}{\mathrm{d}x} + (1+x)y = \mathrm{e}^x.$$

Solution 5.2.1. This is a linear differential equation of first-order

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1+x}{x}y = \frac{\mathrm{e}^x}{x}.$$

The integrating factor is given by

$$\mu(x) = \mathrm{e}^{\int \frac{1+x}{x} \mathrm{d}x}.$$

Since

$$\int^x \frac{1+x}{x} dx = \int \left(\frac{1}{x}+1\right) dx = \ln x + x,$$
$$\mu(x) = e^{\ln x + x} = x e^x.$$

It follows that:

$$y = \frac{1}{xe^x} \left[\int xe^x \frac{e^x}{x} dx + C \right]$$
$$= \frac{1}{xe^x} \left[\int e^{2x} dx + C \right] = \frac{1}{xe^x} \left[\frac{e^{2x}}{2} + C \right].$$

Therefore the solution is given by

$$y = \frac{\mathrm{e}^x}{2x} + C\frac{\mathrm{e}^{-x}}{x}.$$

► Solve

$$\frac{dy}{dx} + 2xy = 4x.$$

The integrating factor is given immediately by

$$\mu(x) = \exp\left\{\int 2x \, dx\right\} = \exp x^2.$$

Multiplying through the ODE by $\mu(x) = \exp x^2$ and integrating, we have

$$y \exp x^2 = 4 \int x \exp x^2 dx = 2 \exp x^2 + c.$$

The solution to the ODE is therefore given by $y = 2 + c \exp(-x^2)$.

Exercises

Solve the following differential equations by first finding an integrating factor:

(a) $2(y^3 - 2)dx + 3xy^2dy = 0$, (b) (b) $(y + x^4)dx - xdy = 0$. Ans. (a) $\mu = x$, $x^2y^3 - 2x^2 = c$, (b) $\mu = 1/x^2$, $\frac{x^3}{3} - \frac{y}{x} = c$.

Group of terms	Integrating factor $I(x, y)$	Exact differential $dy(x, y)$
y dx - x dy	$-\frac{1}{x^2}$	$\frac{xdy - ydx}{x^2} = d\left(\frac{y}{x}\right)$
y dx - x dy	$\frac{1}{y^2}$	$\frac{ydx - xdy}{y^2} = d\left(\frac{x}{y}\right)$
y dx - x dy	$-\frac{1}{xy}$	$\frac{xdy - ydx}{xy} = d\left(\ln\frac{y}{x}\right)$
y dx - x dy	$-\frac{1}{x^2+y^2}$	$\frac{xdy - ydx}{x^2 + y^2} = d\left(\arctan\frac{y}{x}\right)$
y dx + x dy	$\frac{1}{xy}$	$\frac{ydx + xdy}{xy} = d(\ln xy)$
y dx + x dy	$\frac{1}{(xy)^n}, \qquad n>1$	$\frac{y dx + x dy}{(xy)^n} = d\left[\frac{-1}{(n-1)(xy)^{n-1}}\right]$
y dy + x dx	$\frac{1}{x^2 + y^2}$	$\frac{ydy + xdx}{x^2 + y^2} = d\left[\frac{1}{2}\ln\left(x^2 + y^2\right)\right]$
y dy + x dx	$\frac{1}{(x^2+y^2)^n}, \qquad n>1$	$\frac{ydy+xdx}{(x^2+y^2)^n} = d\left[\frac{-1}{2(n-1)(x^2+y^2)^{n-1}}\right]$
ay dx + bx dy (<i>a</i> , <i>b</i> constants)	$x^{a-1}y^{b-1}$	$x^{a+1}y^{b+1}(aydx+bxdy)=d(x^ay^b)$

Table 2.1

5.8 The Bernoulli Equation

standard form of the Bernoulli equation The **Bernoulli equation** is a nonlinear first order differential equation with the standard form

$$\frac{dy}{dx} + P(x)y = Q(x)y^n, \quad (n \neq 1).$$
(34)

The substitution

$$u = y^{1-n} \tag{35}$$

reduces (34) to the linear first order ODE

$$\frac{1}{(1-n)}\frac{du}{dx} + P(x)u = Q(x),$$
(36)

$$\frac{\mathrm{d}y}{\mathrm{d}x} + p(x)y = q(x)y^n$$

is known as Bernoulli equations, named after Swiss mathematician James Bernoulli (1654–1705). This is a nonlinear differential equation if $n \neq 0$ or 1. However, it can be transformed into a linear equation by multiplying both sides with a factor $(1-n)y^{-n}$

$$(1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x} + (1-n)p(x)y^{1-n} = (1-n)q(x).$$

Since

$$(1-n)y^{-n}\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}}{\mathrm{d}x}(y^{1-n}),$$

the last equation can be written as

$$\frac{\mathrm{d}}{\mathrm{d}x}(y^{1-n}) + (1-n)p(x)y^{1-n} = (1-n)q(x),$$

which is a first-order linear equation in terms of y^{1-n} . This equation can be solved for y^{1-n} , from which the solution of the original equation can be obtained.

Example 5.2.2. Find the solution of

$$\frac{\mathrm{d}y}{\mathrm{d}x} + \frac{1}{x}y = x^2y^3$$

with the condition y(1) = 1.

Solution 5.2.2. This a Bernoulli equation of n = 3. Multiplying this equation by $(1-3)y^{-3}$, we have

$$-2y^{-3}\frac{\mathrm{d}y}{\mathrm{d}x} - 2\frac{1}{x}y^{-2} = -2x^2,$$

which can be written as

$$\frac{\mathrm{d}}{\mathrm{d}x}y^{-2} - \frac{2}{x}y^{-2} = -2x^2.$$

This equation is first-order in y^{-2} and can be solved by multiplying it with an integrating factor μ ,

$$\mu = e^{\int (-\frac{2}{x})dx} = e^{-2\ln x} = \frac{1}{x^2}.$$

Thus

$$\frac{1}{x^2}y^{-2} = \int \frac{1}{x^2}(-2x^2)dx + C = -2x + C.$$

At x = 1, y = 1, therefore

$$1 = -2 + C, \quad C = 3.$$

Hence the specific solution of the original nonlinear linear differential equation is

$$y^{-2} = -2x^3 + 3x^2$$

2nd Method

Suppose that $u = y^{1-n}$

$$\frac{dy}{dx} + \frac{1}{x}y = x^{2}y^{3} \Rightarrow \pm y^{3}$$

$$y^{-3}\frac{dy}{dx} + \frac{1}{x}y^{-2} = x^{2} \qquad (2)$$

$$n = 3, \quad \frac{du}{dy} = y^{-2} \Rightarrow du = -2y^{-3}dy$$

$$\frac{du}{dx} = -2y^{-3}\frac{dy}{dx}$$

$$y^{-3}\frac{dy}{dx} = \frac{-1}{2}\frac{du}{dx}$$
From Eq.(1) $\Rightarrow \frac{-1}{2}\frac{du}{dx} + \frac{1}{x}u = x^{2}$ multiply by -2

$$\frac{du}{dx} - \frac{2}{x}u = -2x^{2}$$
Compare With $\frac{du}{dx} + P(x)u = Q(x)$

$$P(x) = \frac{-2}{x}, \quad Q(x) = -2x^{2}$$

$$\mu = e^{\int P(x)dx} = e^{-2\int \frac{1}{x}dx} = e^{-2\ln(x)} = e^{\ln(x^{-2})} = x^{-2}$$
Multiply Eq.(2) by x^{-2}

$$x^{-2}\frac{du}{dx} - 2x^{-3}u = -2$$

$$\frac{d}{dx}(x^{-2}u) = -2 \Rightarrow \int d(x^{-3}u) = -2\int dx$$

$$x^{-3}u = -2x + c$$

Full worked solutions

Exercise 1.

Exercise 1.	$\frac{dy}{dx}$	$+ P(x)y = Q(x)y^n$
DIVIDE by y^n :		$\frac{1}{y^n}\frac{dy}{dx} + P(x)y^{1-n} = Q(x)$
$\underline{\text{SET } z = y^{1-n}}:$	i.e.	$\frac{dz}{dx} = (1-n)y^{(1-n-1)}\frac{dy}{dx}$
	i.e.	$\frac{1}{(1-n)}\frac{dz}{dx} = \frac{1}{y^n}\frac{dy}{dx}$
SUBSTITUTE		$\frac{1}{(1-n)}\frac{dz}{dx} + P(x)z = Q(x)$
	i.e.	$\frac{dz}{dx} + P_1(x)z = Q_1(x)$ linear in z
	where	$P_1(x) = (1 - n)P(x)$ $Q_1(x) = (1 - n)Q(x)$.

Solve the following Bernoulli differential equations:

EXERCISE 2. $\frac{dy}{dx} - \frac{1}{x}y = xy^{2}$ EXERCISE 3. $\frac{dy}{dx} + \frac{y}{x} = y^{2}$ EXERCISE 4. $\frac{dy}{dx} + \frac{1}{3}y = e^{x}y^{4}$ EXERCISE 5. $\frac{dy}{dx} = \frac{1}{3}y = \frac$

 $x\frac{dy}{dx} + y = xy^3$

Exercise 6.

 $\frac{dy}{dx} + \frac{2}{x}y = -x^2\cos x \cdot y^2$

EXERCISE 7.

$$2\frac{dy}{dx} + \tan x \cdot y = \frac{(4x+5)^2}{\cos x}y^3$$

EXERCISE 8.

$$x\frac{dy}{dx} + y = y^2 x^2 \ln x$$

EXERCISE 9.

 $\frac{dy}{dx} = y \cot x + y^3 \operatorname{cosec} x$

Exercise 2.

This is of the form $\frac{dy}{dx} + P(x)y = Q(x)y^n$ where

where
$$P(x) = -\frac{1}{x}$$

 $Q(x) = x$
and $n = 2$
 $\underline{\text{DIVIDE by } y^n}$: i.e. $\frac{1}{y^2} \frac{dy}{dx} - \frac{1}{x} y^{-1} = x$
 $\underline{\text{SET } z = y^{1-n} = y^{-1}}$: i.e. $\frac{dz}{dx} = -y^{-2} \frac{dy}{dx} = -\frac{1}{y^2} \frac{dy}{dx}$
 $\therefore -\frac{dz}{dx} - \frac{1}{x} z = x$
i.e. $\frac{dz}{dx} + \frac{1}{x} z = -x$

Integrating factor,

$$IF = e^{\int \frac{1}{x} dx} = e^{\ln x} = x$$

$$\therefore \quad x\frac{dz}{dx} + z = -x^2$$

i.e.
$$\frac{d}{dx}[x \cdot z] = -x^2$$

i.e.
$$xz = -\int x^2 dx$$

i.e.
$$xz = -\frac{x^3}{3} + C$$

$$\frac{x}{y} = -\frac{x^3}{3} + C$$

Use $z = \frac{1}{y}$:

Exercise 3.

This is of the form $\frac{dy}{dx} + P(x)y = Q(x)y^n$ where $P(x) = \frac{1}{x}$, Q(x) = 1, and n = 2<u>DIVIDE by y^n </u>: i.e. $\frac{1}{y^2}\frac{dy}{dx} + \frac{1}{x}y^{-1} = 1$ <u>SET $z = y^{1-n} = y^{-1}$ </u>: i.e. $\frac{dz}{dx} = -1 \cdot y^{-2}\frac{dy}{dx} = -\frac{1}{y^2}\frac{dy}{dx}$

$$\therefore \quad -\frac{dz}{dx} + \frac{1}{x}z = 1$$

i.e.
$$\frac{dz}{dx} - \frac{1}{x}z = -1$$

Integrating factor, IF = $e^{-\int \frac{dx}{x}} = e^{-\ln x} = e^{\ln x^{-1}} = \frac{1}{x}$

 $\therefore \quad \frac{1}{x}\frac{dz}{dx} - \frac{1}{x^2}z = -\frac{1}{x}$ i.e. $\frac{d}{dx}\left[\frac{1}{x} \cdot z\right] = -\frac{1}{x}$ i.e. $\frac{1}{x} \cdot z = -\int \frac{dx}{x}$ i.e. $\frac{z}{x} = -\ln x + C$ $\underbrace{\text{Use } z = \frac{1}{y}:}_{y} \quad \frac{1}{yx} = C - \ln x$ i.e. $\frac{1}{y} = x(C - \ln x) .$

Return to Exercise 3

CH1

Exercise 4.

This of the form $\frac{dy}{dx} + P(x)y = Q(x)y^n$				
w	here	$P(x) = \frac{1}{3}$ $Q(x) = e^{x}$		
		$Q(x) = e^x$		
	and	n = 4		
DIVIDE by y^n :	i.e.	$\frac{1}{y^4}\frac{dy}{dx} + \frac{1}{3}y^{-3} = e^x$		
<u>SET</u> $z = y^{1-n} = y^{-3}$:	i.e.	$\frac{dz}{dx} = -3y^{-4}\frac{dy}{dx} = -\frac{3}{y^4}\frac{dy}{dx}$		
	÷	$-\frac{1}{3}\frac{dz}{dx} + \frac{1}{3}z = e^x$		
	i.e.	$\frac{dz}{dx} - z = -3e^x$		

Integrating factor,

$$IF = e^{-\int dx} = e^{-x}$$

$$\therefore e^{-x}\frac{dz}{dx} - e^{-x}z = -3e^{-x} \cdot e^{x}$$

i.e.
$$\frac{d}{dx}[e^{-x} \cdot z] = -3$$

i.e.
$$e^{-x} \cdot z = \int -3 \, dx$$

i.e.
$$e^{-x} \cdot z = -3x + C$$

Exercise 5. Bernoulli equation: $\frac{dy}{dx} + \frac{y}{x} = y^3$ with $P(x) = \frac{1}{x}$, Q(x) = 1, n = 3<u>DIVIDE by y^n i.e. y^3 : $\frac{1}{y^3} \frac{dy}{dx} + \frac{1}{x}y^{-2} = 1$ <u>SET $z = y^{1-n}$ i.e. $z = y^{-2}$:</u> $\frac{dz}{dx} = -2y^{-3}\frac{dy}{dx}$ i.e. $-\frac{1}{2}\frac{dz}{dx} = \frac{1}{y^3}\frac{dy}{dx}$ $\therefore -\frac{1}{2}\frac{dz}{dx} + \frac{1}{x}z = 1$ i.e. $\frac{dz}{dx} - \frac{2}{x}z = -2$ </u>

<u>Integrating factor</u>, IF = $e^{-2\int \frac{dx}{x}} = e^{-2\ln x} = e^{\ln x^{-2}} = \frac{1}{x^2}$

 $\therefore \quad \frac{1}{x^2} \frac{dz}{dx} - \frac{2}{x^3} z = -\frac{2}{x^2}$ i.e. $\frac{d}{dx} \left[\frac{1}{x^2} z \right] = -\frac{2}{x^2}$ i.e. $\frac{1}{x^2} z = (-2) \cdot (-1) \frac{1}{x} + C$ i.e. $z = 2x + Cx^2$ Use $z = \frac{1}{y^2}$: $y^2 = \frac{1}{2x + Cx^2}$.

Return to Exercise 5

5. Standard integrals

f(x)	$\int f(x)dx$	f(x)	$\int f(x)dx$
x^n	$\frac{x^{n+1}}{n+1} (n \neq -1)$	$\left[g\left(x\right)\right]^{n}g'\left(x\right)$	$\frac{[g(x)]^{n+1}}{n+1}$ $(n \neq -1)$
$\frac{1}{x}$	$\ln x $	$\frac{g'(x)}{g(x)}$	$\ln g(x) $
e^x	e^x	a^x	$\frac{a^x}{\ln a} (a > 0)$
$\sin x$	$-\cos x$	$\sinh x$	$\cosh x$
$\cos x$	$\sin x$	$\cosh x$	$\sinh x$
$\tan x$	$-\ln \cos x $	$\tanh x$	$\ln \cosh x$
$\operatorname{cosec} x$	$\ln \left \tan \frac{x}{2} \right $	$\operatorname{cosech} x$	$\ln \tanh \frac{x}{2}$
$\sec x$	$\ln \sec x + \tan x $	$\operatorname{sech} x$	$2\tan^{-1}e^x$
$\sec^2 x$	$\tan x$	$\operatorname{sech}^2 x$	$\tanh x$
$\cot x$	$\ln \sin x $	$\coth x$	$\ln \sinh x $
$\sin^2 x$	$\frac{x}{2} - \frac{\sin 2x}{4}$	$\sinh^2 x$	$\frac{\sinh 2x}{4} - \frac{x}{2}$
$\cos^2 x$	$\frac{\overline{x}}{2} + \frac{\sin 2x}{4}$	$\cosh^2 x$	$\frac{\sinh 2x}{4} + \frac{x}{2}$

$\int f(x)$	$\int f(x) dx$	f(x)	$\int f(x) dx$
$\boxed{\frac{1}{a^2 + x^2}}$	$\frac{1}{a} \tan^{-1} \frac{x}{a}$	$\frac{1}{a^2 - x^2}$	$\frac{1}{2a}\ln\left \frac{a+x}{a-x}\right (0 < x < a)$
	(a > 0)	$\frac{1}{x^2-a^2}$	$\frac{1}{2a}\ln\left \frac{x-a}{x+a}\right (x >a>0)$
$\frac{1}{\sqrt{a^2 - x^2}}$	$\sin^{-1}\frac{x}{a}$	$\frac{1}{\sqrt{a^2 + x^2}}$	$\ln \left \frac{x + \sqrt{a^2 + x^2}}{a} \right \ (a > 0)$
	(-a < x < a)	$\frac{1}{\sqrt{x^2 - a^2}}$	$\ln \left \frac{x + \sqrt{x^2 - a^2}}{a} \right (x > a > 0)$
$\sqrt{a^2 - x^2}$	$\frac{a^2}{2} \left[\sin^{-1} \left(\frac{x}{a} \right) \right]$	$\sqrt{a^2+x^2}$	$\frac{a^2}{2} \left[\sinh^{-1} \left(\frac{x}{a} \right) + \frac{x\sqrt{a^2 + x^2}}{a^2} \right]$
	$+\frac{x\sqrt{a^2-x^2}}{a^2}\Big]$	$\sqrt{x^2-a^2}$	$\frac{a^2}{2} \left[-\cosh^{-1}\left(\frac{x}{a}\right) + \frac{x\sqrt{x^2 - a^2}}{a^2} \right]$